982 research outputs found

    A benign juvenile environment reduces the strength of antagonistic pleiotropy and genetic variation in the rate of senescence

    Get PDF
    The environment can play an important role in the evolution of senescence because the optimal allocation between somatic maintenance and reproduction depends on external factors influencing life expectancy. The aims of this study were to experimentally test whether environmental conditions during early life can shape senescence schedules, and if so, to examine whether variation among individuals or genotypes with respect to the degree of ageing differs across environments. We tested life-history plasticity and quantified genetic effects on the pattern of senescence across different environments within a reaction norm framework by using an experiment on the three-spined stickleback (Gasterosteus aculeatus, Linnaeus) in which F1 families originating from a wild annual population experienced different temperature regimes. Male sticklebacks that had experienced a more benign environment earlier in life subsequently reduced their investment in carotenoid-based sexual signals early in the breeding season, and consequently senesced at a slower rate later in the season, compared to those that had developed under harsher conditions. This plasticity of ageing was genetically determined. Both antagonistic pleiotropy and genetic variation in the rate of senescence were evident only in the individuals raised in the harsher environment. The experimental demonstration of genotype-by-environment interactions influencing the rate of reproductive senescence provides interesting insights into the role of the environment in the evolution of life histories. The results suggest that benign conditions weaken the scope for senescence to evolve and that the dependence on the environment may maintain genetic variation under selection

    Teaching Evolution While Aiming at the Cautious Middle

    Full text link

    The effects of individual nonheritable variation on fitness estimation and coexistence

    Get PDF
    Demographic theory and data have emphasized that non-heritable variation in individual frailty enables selection within cohorts, affecting the dynamics of a population while being invisible to its evolution. Here we include the component of individual variation in longevity or viability which is non-heritable in simple bacterial growth models and explore its ecological and evolutionary impacts. First, we find that this variation produces consistent trends in longevity differences between bacterial genotypes when measured across stress gradients. Given that direct measurements of longevity are inevitably biased due to the presence of this variation and ongoing selection, we propose the use of the trend itself for obtaining more exact inferences of genotypic fitness. Second, we show how species or strain coexistence can be enabled by non36 heritable variation in longevity or viability. These general conclusions are likely to extend beyond bacterial systems

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    The emerging structure of the Extended Evolutionary Synthesis: where does Evo-Devo fit in?

    Get PDF
    The Extended Evolutionary Synthesis (EES) debate is gaining ground in contemporary evolutionary biology. In parallel, a number of philosophical standpoints have emerged in an attempt to clarify what exactly is represented by the EES. For Massimo Pigliucci, we are in the wake of the newest instantiation of a persisting Kuhnian paradigm; in contrast, Telmo Pievani has contended that the transition to an EES could be best represented as a progressive reformation of a prior Lakatosian scientific research program, with the extension of its Neo-Darwinian core and the addition of a brand-new protective belt of assumptions and auxiliary hypotheses. Here, we argue that those philosophical vantage points are not the only ways to interpret what current proposals to ‘extend’ the Modern Synthesis-derived ‘standard evolutionary theory’ (SET) entail in terms of theoretical change in evolutionary biology. We specifically propose the image of the emergent EES as a vast network of models and interweaved representations that, instantiated in diverse practices, are connected and related in multiple ways. Under that assumption, the EES could be articulated around a paraconsistent network of evolutionary theories (including some elements of the SET), as well as models, practices and representation systems of contemporary evolutionary biology, with edges and nodes that change their position and centrality as a consequence of the co-construction and stabilization of facts and historical discussions revolving around the epistemic goals of this area of the life sciences. We then critically examine the purported structure of the EES—published by Laland and collaborators in 2015—in light of our own network-based proposal. Finally, we consider which epistemic units of Evo-Devo are present or still missing from the EES, in preparation for further analyses of the topic of explanatory integration in this conceptual framework
    • 

    corecore